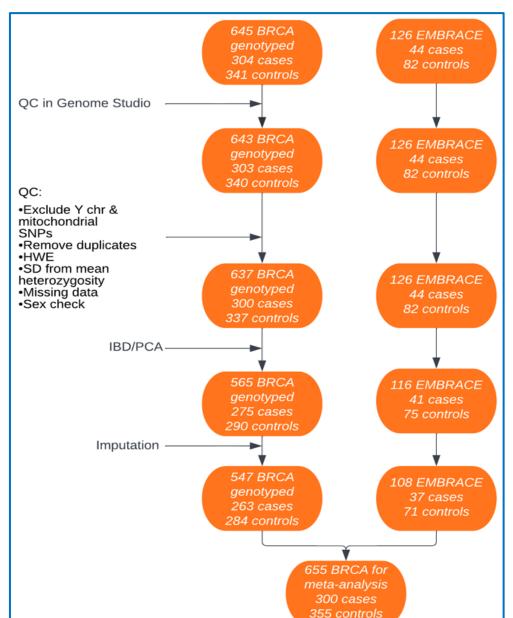
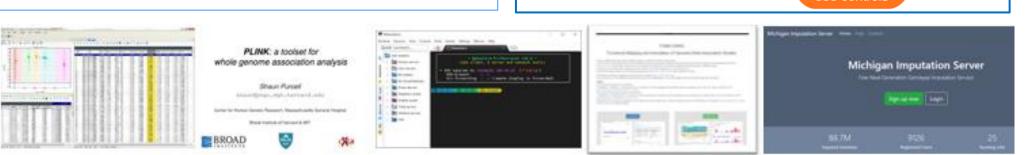


Can we improve ovarian cancer risk prediction for women with *BRCA1/2* mutations using polygenic risk scores?

Nicola Flaum^{1,2}, John Bowes^{3,} Miriam J Smith^{1,2}, Emma J Crosbie^{4,5}, Richard Edmondson^{4,5}, Artitaya Lophatananon⁶, D. Gareth Evans^{1,2,7,8,9}

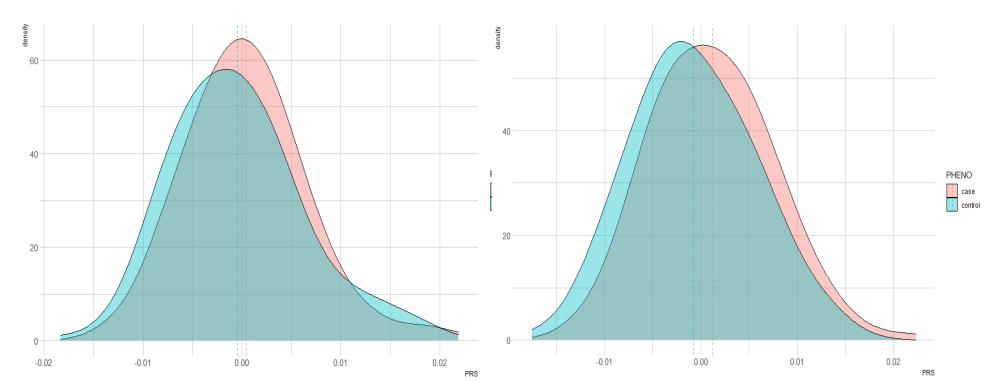
. - Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester Academic Health Science Centre, UK. 2 - North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation
Trust, Manchester Academic Health Science Centre, UK. 3 - Division of Medicine and Health, University of Biology, Medicine and Health, University of Manchester, UK. 4 - Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK. 5 - Division of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, University of Manchester, UK. 6 - Division of Population Health, Health Services Research and Primary Care, University of Manchester, UK. 7 - Prevention Breast Cancer Centre, University of Manchester, UK. 8 - The Christie NHS Foundation Trust, Manchester, UK. 9 - Manchester Breast Centre, Manchester Cancer Research Centre, University of Manchester, UK.

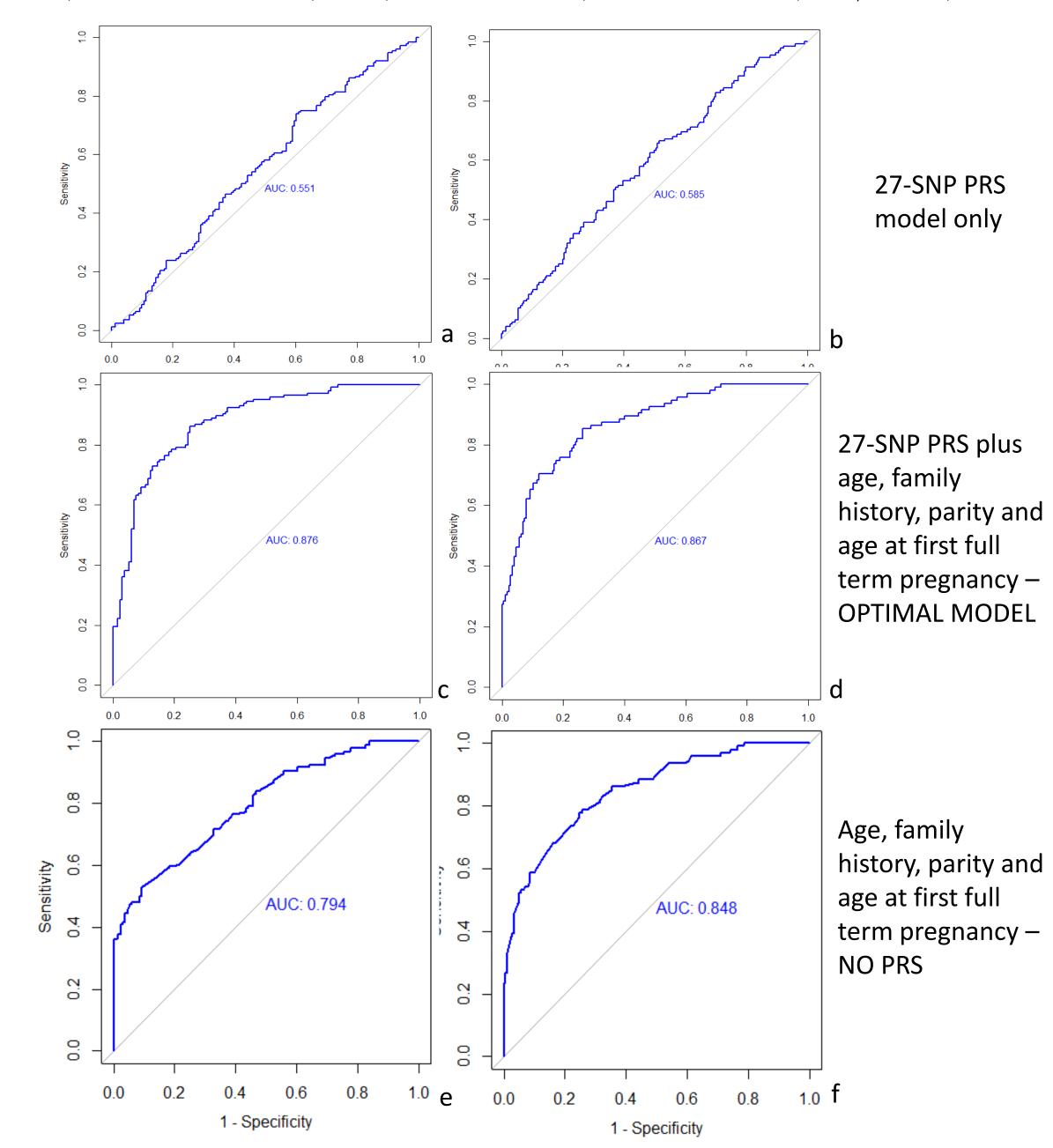

BACKGROUND AND OBJECTIVES


- 1/3 of familial epithelial ovarian cancer (EOC) is explained by *BRCA1/2* pathogenic variants (PVs).
- Polygenic risk scores (PRSs) for *BRCA1/2*-heterozygotes associated with EOC have been created by Barnes et al
- EOC risk is also affected by clinical/hormonal factors.

METHODS

- Samples from 300 cases and 355 controls were genotyped using the Illumina Oncoarray Iscan and in the EMBRACE study
- GWAS-standard QC of the data was performed
- Modified PRSs were constructed based on the Barnes et al PRS.
- Model discrimination and EOC risk was assessed by area under the curve (AUC) values and lowesthighest quintile odds ratio (ORs) difference.
- We investigated model optimisation using logistic regression to combine models with clinical & hormonal data.





RESULTS

- 547 women (263 cases with EOC and 284 controls) were included in the *BRCA* dataset and 108 women (37 cases and 71 controls) in the EMBRACE dataset.
- Age at diagnosis, family history and survival differed between the datasets, hormonal factors were similar.
- Mean age at EOC diagnosis was 52.2 for *BRCA1*-heterozygotes and 59.8 for *BRCA2*-heterozygotes.

Density plots for BRCA1 and BRCA2 heterozygotes using a 27-SNP PRS model

ROC curves and AUC values for BRCA1 (a, c and e) and BRCA2 (b, d and f) heterozygotes

Table of differences between lowest and highest quintiles in different risk models

		Difference between highest and lowest quintile										
Risk model	Unadj	Age	FH of EOC	Age at menarche	Age at menopause	Age at FTP	Parity	OCP use	Combined hormonal factors*	Age at death	Optimised model ⁺	
BRCA1 overall	2.2x	2.5x^	3.8x	3.0x	1.9x^	19.2x′ 2.4x^	1.7x	2.3x	23.0x' 2.8x^	23.6x' 2.9x^	46.3x	
BRCA1 serous	2.3x	1.9x^	3.5x	2.7x	13.5x' 2.3x^	13.5x' 2.3x^	1.5x	2.4x	21.9x' 3.8x^	27.9x' 4.8x^	20.8x	
BRCA2 overall	6.3x	5.9x^	7.4x	5.2x	20.9x' 5.6x^	43.3x′ 11.7x^	3.2x	7.6x	41.5x' 11.2x^	37.7x′ 10.2x^	52.1x	
BRCA2 serous	7.7x	20.4' 6.6x^	8.2x	4.8x	21.4x′ 6.9x^	31.8x′ 10.3x^	4.1x	12.6x	40.1x' 12.9x^	28.9x′ 9.3x^	Not calculable	

Combined hormonal factors included age at menarche, menopause, first full term pregnancy and parity

\uses unadjusted values for 0-20% percentile as adjusted variable incalculable value for 0-20% percentile for adjusted value calculated as 0 so 0.1 used as conservative estimate for difference between highest and owest quintile

optimised model includes PRS, age, family history, parity and age at first full term pregnancy

DISCUSSION

- •PRS alone does not have good predictive ability for EOC for women with *BRCA1/2*, but in combination with risk factors the risk discrimination ability is significantly improved.
- However the contribution of PRS to the risk model is small.
- •It is also possible that in *BRCA1/2*-heterozygotes who already have a significant proportion of their genetic risk explained by these high-risk genes, the impact of PRSs is less than in women with no explained genetic cause.
- Larger prospective studies could assess if combined PRS models inform risk-reducing decisions for women at risk of EOC.

References

- Flaum N, et al. Optimisation of polygenic risk scores in BRCA1/2 pathogenic variant heterozygotes in epithelial ovarian cancer, Genetics in Medicine (2023), doi: https://doi.org/10.1016/j.gim.2023.100898.
- Barnes DR, et al. Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genet Med. 2020;22(10):1653-66.

Conflicts of interest: none. Email: Nicola.flaum@manchester.ac.uk in Dr Niki Flaum